Expert Guided Autonomous Mobile Robot Learning
نویسندگان
چکیده
In the control of autonomous mobile robots there exist two types of control: global control and local control. The requirement to solve global and local tasks arises respectively. This chapter concentrates on local tasks and shows that robots can learn to cope with some local tasks within minutes. The main idea of the chapter is to show that, while creating intelligent control systems for autonomous mobile robots, the beginning is most important as we have to transfer as much as possible human knowledge and human expert-operator skills into the intelligent control system. Successful transfer ensures fast and good results. One of the most advanced techniques in robotics is an autonomous mobile robot online learning from the experts’ demonstrations. Further, the latter technique is briefly described in this chapter. As an example of local task the wall following is taken. The main goal of our experiment is to teach the autonomous mobile robot within 10 minutes to follow the wall of the maze as fast and as precisely as it is possible. This task also can be transformed to the obstacle circuit on the left or on the right. The main part of the suggested control system is a small Feed-Forward Artificial Neural Network. In some particular cases – critical situations – “If-Then” rules undertake the control, but our goal is to minimize possibility that these rules would start controlling the robot. The aim of the experiment is to implement the proposed technique on the real robot. This technique enables to reach desirable capabilities in control much faster than they would be reached using Evolutionary or Genetic Algorithms, or trying to create the control systems by hand using “If-Then” rules or Fuzzy Logic. In order to evaluate the quality of the intelligent control system to control an autonomous mobile robot we calculate objective function values and the percentage of the robot work loops when “If-Then” rules control the robot. DOI: 10.4018/978-1-61692-811-7.ch011
منابع مشابه
Constructing mobile manipulation behaviors using expert interfaces and autonomous robot learning
متن کامل
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملPerceptual Interpretation for Autonomous Navigation through Dynamic Imitation Learning
Achieving high performance autonomous navigation is a central goal of field robotics. Efficient navigation by a mobile robot depends not only on the individual performance of perception and planning systems, but on how well these systems are coupled. When the perception problem is clearly defined, as in well structured environments, this coupling (in the form of a cost function) is also well de...
متن کاملUser-guided reinforcement learning of robot assistive tasks for an intelligent environment
Autonomous robots hold the possibility of performing a variety of assistive tasks in intelligent environments. However, widespread use of robot assistants in these environments requires ease of use by individuals who are generally not skilled robot operators. In this paper we present a method of training robots that bridges the gap between user programming of a robot and autonomous learning of ...
متن کامل